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Abstract

A particle moves along a line in steps subject to the following

probability law: the particle moves from x to C1 + C2x with proba-

bility, p or from x to C x with probability, q(= 1 - p). Such a
3

movement characterizes a type of random walk and, as such, poses prob-

lems associated with random phenomena. One such problem is that of

finding the expected number of steps necessary for a particle to cross

a pre-assigned level for the first time, having taken its first step

from the initial position, x. This expectation is, of course, a

function df x and is designated, D(x).

The properties of the function, D(x), are studied and put to use

in determining D(x) explicitly. Since the function depends strongly

on the choice of the constants, C2  and C3 , the problem must be

treated by cases which are characterized by the relationship between

C2 and C 3 * The ease with which solutions are found also depends on

the position of the absorbing barrier and several choices are studied.
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This paper is a sequel to the paper, Studies in Generalized Random

Walks, I. Distribution Functions and Moments, Mathematical Note No. 277.

A brief review of the kind of random walk treated in these studies

seems in order here.

Consider the motion of a particle in an interval governed by a

fixed probability law. The particle position after n steps is given

by

C1 + C2 Xn-1 with probability p

x =
n

C 3Xn with probability q(=l - p).

It is easy to see that the particle is constrained to motion in
CI

the interval, [O, 1 2. Having begun its walk in that interval,

it can never leave.

An absorbing barrier at some point in the interval, say y, ter-

minates the 'walk.' This means that if x0, the initial point, is

greater than y, the walk never starts and if x0  is less than y,

the motion stops when the particle first passes y. Then, given an

initial position, xO, and an absorbing barrier, y, it is natural to

inquire into the problem of finding the number of steps necessary for

the particle to pass y. This number is a random variable and finding

its expected value is the object of this paper. If each step takes

unit time, the problem is a first passage time or absorption time

problem. Similarly, if the process is regarded as a game (such as the

gambler's analogue discussed in I), the absorption time is just the

duration of the game.



II. Expected First Passage Time

1. General expressions and properties.

The most general expression for the expected first passage time

may be derived by examining the simple one-step process. If x is

the starting point, the next point is either C + C x or C x with

probabilities p and q respectively. Let y be the coordinate at

which there is an absorbing barrier and let D(x) be the expected

time or number of steps to cross y from below, having started at x.

We assume that

0 < Y < y _ C
- 2

D(x) < m ,

D(x) =0 when x > y and

D(x1) > D(x2 ) if x1 < x2.

Then, starting at x, if the first step is to C1 + C2 x, the process

continues as if C1 + C 2x were the initial position and if the first

step is to C3x , the process continues as if that were the initial

position. Therefore, D(x) may be written in terms of D(C1 + C 2x)

and D(C3x).

D(x) = p(D(C1 + C2x) + 1) + q(D(C3x) + 1)

= pD(C1 + C2 x) + qD(C3x) + 1.

This is the basic equation for these absorption time analyses.

However, there are several other expressions which prove useful.



If (1) is applied successively to D(C x), D(C 2x), etc., D(x)

may be written as

D(x) =pD(C + C x) + qD(C X) + 1
1 2 3

-pDCC)pD(C +0 Cx) + q~rpD(c + C x) + qD(C~x X) + 11 + 1
21 2 3 3 3

= D( +C ) pD( +C ) +pq [D(C +0 C Cx) + IDCX 1 '1 2 1pD( C 2 3x 2
1 1

= DC+pqC x)C+ pDC +CCC)+ qDCx) CX

kD 2 kD

p E qk(C 1+ C2C x) + E q
k=O 1 3 k=O

(2)
OD kk 1~pE q D(C + CC X) +- .

*k=O 1 2 3 p

Note that C +. C x may be greater than y or, more generally, it1 2

may be that C +C2 X, C1 + CC x, ... C + C2 C mx>.y. 'Chen the first

m + 1 terms of the sum in (2) contribute nothing.

Another expression for DWx, similar to (2), may be found by

successive ~~applications of (1) to DCC + Cx), D(C + CC +C2xec

D(x) =pD(C 1 + C x) + qD(C X)+ 1

11 32
2 32p~pD(C+ CC +00 x +0x)C +DC C X)+CI]C+ (CX) +111 12 2 2 3 3 31 52

P 2(pC+qpC C +C C +x) + qD(Cx) +lCCCi p2+1
15 2 1 2 2 3

-qD(0 5 x) + qpD(C (C1 + C x)) + p2 D(C (01 + C + C 2x)) +

k k
k_2 k 2 k+ qp D(0 53(C1 1- 02 + C2 x)+1I + P + p + ... + p. (3)



C 1 1

Since y < C
y~l-c 2

,k
1 - C

2 k
C C 2+ C2 x> y

for all k greater than some n. Then, because D(u) = 0 for all

u > y, (3) has a finite number of terms. If by [a] is meant the

greatest integer in a, the highest power of p appearing in (3) is

given by

C1  C1
i n( 1 C y) - i n( 1  C x)1

lnC
2

and it is obvious that N = m - 1. Equation (3) can now be written

in a more concise form.

N 1 kN

DW) = q E 
p kDc(C 2 - + C x) + E k

k=0 k=0

N 1 _ k N+l

= q [ p DC (C 2 + Ckx) + (4)
k=O 3 1 C2 q

Having thus established the functional relations, (1), (2), and

(4), some general properties of the expected duration function can now

be derived.

It is expedient to introduce here the operator notation used in I.

The operators, T1 , T2 , and T are defined by

T1X =C 1 + C2x

T2x 3x

Tx = either T1 x or T 2x.
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One obvious property of these operators is nonlinearity. To be sure,

T2  is a linear operator but any combination of operations that

includes at least one TI operation is nonlinear.

Tm(Xl + x2 ) < Tm x + Tax2 , (5)

where at least one of the operators is a TI. Now suppose Tmx = y.

Then Tm (x + Ax) > y and one is led to suspect that the number of steps

necessary for a particle to go beyond y, having started at x, is

surely at least one greater than the number necessary if the particle

had started at x + Ax. In particular, if only forward steps are con-

sidered (assume that the probability of a T operation is one), then

(5) implies that the expected duration would have discontinuities at
y-c i y-Ci(i +c2 )

2 , etc. and the jumps would be of unit ampli-
2 C2

tude. That there are, in general, discontinuities in D(x)- is

demonstrated in the following theorem.

Theorem 1.

C 1 > 0, 0 < C2, C3 < 1.

There exists discontinuities in the expected duration function.

Proof: First note that the point, y (the absorbing barrier point) is

a point of discontinuity.

D(y) = 1 + qD(C3y)

D(y+) = 0 (6)

D(y) - D(y(+)) = 1 + qD(C3y) > 0,
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C1  -

since D(x) > 0 for all xe[O, - - Similarly,
1 C 2

D -) pD(y) + qD(C - ) +
C 2  3 0 2

y - C y 1 C C y y-7
D( -D1 + )  1i + qD(C C)
Y- C Y - C 1  Y - y - C1

D( 2 ) - D( C2 +) = q-D(C3 C2 D(C 3 C2 + pD(y).

Continuing in this way, it is easy to show that many more such discontinuities

exist. In fact, there is such a discontinuity at each of the points,

1 - C2
(iU C) kin(l - --- 1y

k(y - C -(1  C2 k = 0, 1, 2,,..n, where n ln lnC2 y

022 1 - C 2

ln(l - 2y)

(read greatest integer in 
lnC2 )

That there may be other points of discontinuity is also easy to see.
y - C

For example if C y > ,then surely there is a discontinuity at
y - C1  2 y - C1

C C generated by the one at - ' which in turn is generated

by the discontinuity at y. This completes the proof of the Theorem.

Extending the results of Theorem 1 provides some coarse bounds

on the functions at the points of discontinuity. We will

cite only two examples. Consider equation (5). Because of the

monotonicity property,

D(y) = 1 + qD(C3y) > 1 + qD(y)
D(y > (8)

p



Again using the monotonicity of D(x) and (6),

DC pD(y) + qD(C 3  C +

y - I
pD(y) + qD( ) +(2

D(Y - c ) >D(y) +I >2 -

- p - p

Furthermore, it can be shown that
k(1 -02)

l (iC) (2
D Y - C1 (1 --- 2 ) )> k + 1 

(10)

-k pC2

The inequality (10) gives bounds for the values of the function

at discontinuity'points. In addition, something of the nature of the

jump magnitudes can be determined using the same ideas. Consider the
y - C

saltus at
C2

y -C C_(y - I)  C3(y- di)
DV - D( C +) = p(D(y) - D(y+)) + q(D( (ii)

Now, if C3 (- 1 ) is not a point of discontinuity, the saltus

at 1 is just p times the saltus at y. Whether or not C C-)

C2 302
is a discontinuity point is determined by the constraints involving

C2  and C3.. The cases C2 + C3 < 1 and C2 + C3 > 1 must, in gen-

eral, be handled separately. In an earlier paper (Studies in Generalized

Random Walks, I. Distribution Functions and Moments) it was shown that

if C2 + C 3 1, the path that carries a particle from x to y is

unique. Therefore C C ) is not a point of discontiiuity
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(by point of discontinuity is meant one of the points reached by starting
y - C y- C

at y and using inverse transformations, - C , etc.) and the

second term on the right of (11) vanishes. Similarly,
(C2 (- +) = qp(D(y) - D(y+)) = qpD(y). (12)D(c ) - DC~

Having established the fact that DCx) has discontinuities, it

remains to determine the nature of the solutions between discontinu-

ities. One is strongly led to suspect that the function remains

constant there. Heuristically, the argument for this is that any path

that carries x beyond y but does not carry a point in a neighbor-

hood of x beyond y must necessarily have an infinite number of

steps or one of the two points would be a point of discontinuity. The

paths with an infinite number of steps contribute nothing to the

expected value since they have zero probability. Theorem 2, below,

demonstrates this more rigorously.

Theorem 2. If the expectation function has a derivative at x,.the

derivative vanishes there.

Proof: If D'(x) exists, (1) may be differentiated and D'(x) must

then satisfy

D'(x) = pC2D' (C1 + C2 x) + qC 3D'(C 3x). (13)

The derivates of D(x) are

D(x) -D(x) __ D(x) -D(x)
lim 2 im

XltX xI - X x -X

D(x) -and and D(x1 ) -D(x)

xlX xl-x XlAX x- x
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Note that each of the derivates satisfies (13), even at the discon-

tinuities, but at those points they are not necessarily equal so the

derivatives do not exist there. Let D'(x be one of the derivates

and define M and 6 asm

Mm [ xID'(x) >.-mn) and (5

6 inf D'(x).
M

Choose xe such that

D'( e < 6 + ~

Then

PC 2 D'(C 1 + C 2x e) +i qC 3 D(C 3x e D'(x e < 6 + < D'(C 1 + C 2 xe) + C,

qC D'(C x) < (1 - pC )D' (C1 + C x) + c (16)

-.C 3 D'(C x) < D(C +C x) +
- pC2  3 e 1 2 e 7-7PC2

PC 2 D(C I + C2 x e + qC 3 D(C 3x m D'(x e) < 6 + e< D'(C 3 x + g

PC 2 D'(C 1 + C 2x ) < (1 qC 3 D'(C 3x ) + g (17)

P2D'(C + C x) < D(C x)+ 6
1-qC 3 1 2 e 3 e 1 -qC 3

Multiply both sides of (16) by 1 C and then apply (17).

PC2 C 3 DICx < PC 2  D'(C + C x)+

71 _P2 )l-.qC3) 3 9 (1 -qC 3  1 2e (1 qC 3 )(l PC 2

< D'(C x + (-,(18)3 fC ( qC9(3 U PC2)

(PC 2 + qC 3- l)D'(C 3x) < C
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qC3
The same procedure using 1 - p as a multiplier on (17) yields

PcDqc (C(C x qC

- pC2 )(1- qC)3  1 2 f'(C+ 3 (C)x2  (1 qC 3 )(l- PC 2< IC+ (19)
1D'(C +Cx) + (1 - qC3)(l - pC2 )

(pC2 + qC5 - l)D'(C1 + C2 x ) < r.

Since p + q = 1 and 0 < C2, C5 < 1, pC 2 + qC5 - 1 < 0. The

monotonicity of D(x) insures that D'(x) < 0. Therefore

(PC2 +qC - I)D'(C x )> 02 3 3(20)

(pC2 + qC3 - 1)D'(C 1 + C2 x ) 0.

Since r was chosen arbitrarily and D'(x) may be any of the

derivates, the conclusion is that

b= 0. (21)

Finally, the set of x for which (21) is true is simply

[xID'(x) = ) = UM m  (22)
m

The usefulness of Theorem 2 depends, of course, on the existence of

derivatives. The next theorems demonstrate the existence of right-

hand and left-hand derivatives.

Theorem 3a. The right-hand derivative of D(x) exists for all x.

Proof: Consider the first and third derivates of (14). iLach of these

satisfy (13) and is 0 or -© • If A is the difference quotient, it

is only necessary to show that lima < limA, since the other inequality

is obvious. Take a point, x, in the interval and choose a sequence, ,



11

which goes to zero from above (n 4 0), such that

D(x + ) - D(x) D(x) - D(x)
1ri_ 3 - o. (23)
n-n. x -x

Choose a second sequence, qn 4 0, such that
D(x + I n D D(x) D(xI 1 D(x)

r .Jim =0 . (24)
n-w in Xl+x xI  x

Choose a subsequence , such that n >nk

Then, D(x + - D(x) D(x + ) D(x)
0> > n

- k - k

__>k (25)

Combining (23), (24), and (25)

D(x) - D(x) D(x) -D(x)
< lim (26)

xlx Xltx

which, since lima > limA, demonstrates that

D(x) -D(x) D(x) - D(x)
1 = lim 1 (27)XX xI -x -l xI - x

xl+ x 1 lx1 4

and the theorem is proved.

Theorem 3b. The left-hand derivative of D(x) exists for all x.

Proof: The proof follows exactly the proof for Theorem 3a.

The last general property considered is that of the uniqueness of

the solution. Assuming the existence of functions which satisfy (1),
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(2), and (4), the following theorem demonstrates that there is only

one such solution.

Theorem 4. Let D(x) and D2 (x) be two solutions of (1).

If 6(x) = D1 (x) -D 2(x and 6(x) =0 for X > y, then
C1

6(x) = 0 for all xC[O, - ].

Proof: Let x1  be a point at which 6(x) assumes a maximum value. Then

p6(C1 + C2x I ) + q6(COx) 6(x) > 6(C 1 + C2x I)

q6(C3x i ) > (1 - p)(C 1 + C2 x I) (28)

V(C3x1) > 6(c1 + C2x).

Similarly,

p6(C1 + Cx + q+)C l) x o(x) > 6(0 x)21 3 1 31 (29)

6(C + Cx)> 6(Cx)
1 2 1 3 31

and, therefore

6(C1 + C2xl) 6(0 x l) : 6(xl). (30)
1 21 3 1 1

Thn, if x1  is a maximum point, C1 + C2 x1  and C3x1  are maximum

points. Furthermore T2xl T3 , etc. are also maximum points, and for

all k greater than C 1  C 1

1-C - y) -lIn( 1 -_-2 xI)
2 inC2  2

Tkx > y.

By hypothesis,

6(Tkxl) = 0,

so the conclusion is that

max C 6(x) =0.

0<x<< 1 (1- 0i-2
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A similar argument may be used to show that

min 6(x) =09 (32)

0 < x < I -

so that, finally

6(x) = 0 for all xc[O, 1-- (33)
C2

Although the properties of D(x) set forth in the preceding

theorems describe the general behavior of the function, there is no

method of solution yielding a function that satisfies (1), (2), and

(4) for arbitrary values of the constants, C1, C2, and C . Therefore,

it is necessary to treat cases separately, each case being characterized

by a different constraint on the constants.

The first two cases perhaps should not be part of this discussion,

since the constant, C , is taken to be zero and one for the two cases,

and this violates the general constraint, 0 < C', C2 , c3 < 1. However,

the solutions are limiting cases and, as such, give some insight into

the kind of solutions to expect.

When C3 = 0, equation (1) becomes

D(x) = pD(C1 + C2 x) + qD(O) + 1. (34)C 1  C 1

let in( 1 c  y) - in( c X)

k : n2,]+ i.
k~r 2 InC 2+1

Applying (34) to itself k times yields, for D(x)
I-k

pkD(Cl i -ck k2
D(x) = p 1 2  kCx) + (i + qD(O))(l + p + p +...+ p k-). (35)

1 - 2+2



Since D(x) = 0 for x > y, the first term on. the right vanishes.

D(x) (qD(O) + 1). (36)q

Let r be the least number of forward steps (x - C1 + C 2x) necessary

to carry a particle from zero to a point beyond y.

C1  C
ln( 1  y) - ln( )

r r 2 C 2+1nC2 C

Then D(O) is given by

D(o) 1 (37)r
qp

and finally, D(x) becomes

D(x) 1 (qD(O) + 1)
q

k r
q r -P£(1 -z £  + 1) (38)
q r

p
k

r
qp

The other limiting case of interest is that one for which C 1.3

Here a particle in a one-dimensional random walk never moves backward,

but may, with probability q, remain at its present position. The

problem of finding the expected number of steps until first passage

may be solved directly because the first passage distribution is deriv-

able and the sum defining the first moment is expressible in closed

form. Later on, the same result will be obtained using the functional

equation (1).

Let k be the least number of forward steps necessary to carry a

particle from the point, x, to a point greater than y. This is the

same k as the one used in the previous problem. If the number of
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steps necessary to cross y for the first time having started at x,

is N, and P(i) = Pr(N i], then

P(k) = p k (39)

For N = k + 1, consider the paths that have k + 1 steps, start at x,

and terminate beyond y. Initially, and after each forward step, one

move that goes from x to x(x - C x = 1) may take place. There are
3

just k ways for this to happen so
k

P(k + 1) = kqp k (40)

Recall that the number of ways one can put C indistinguishable ob-

jects into M numbered boxes With no restrictions on the number of

objects in any one box is

(M + C - 1)?
(N - l)7!C.

If the objects correspond to the steps, x - C3 x = x and the boxes

correspond to forward step positions given by
i

1 C2

C 1  -, + C2 x, i 1, 2...k,1 71 -C 2  2

then the number of ways that the particle can experience n 'standing

still' steps at k positions, with no restriction on the number at

each position is

(k + n - 1)!
(k - 1)!n! "

Therefore,

(k + n - 1)! n kP(n + k) (k - i q p (41)

(k 1)!n
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Then, it remains but to multiply (41) by (n + k) and sum over all n

to find D(x). If N is the first moment. of N,

D(x) = pk (n+ k-1)( + k)q nX (k - l)!ni!(n+kn

n=O

pkk (n + k)!n (p k kMn! q  (42)

n=O

kPk k

(l - q)k+l P

The other method for obtaining the solution (42) involves use of

the basic equation (1). When C5 = 1, that equation becomes

D(x) = pD(C1 + C2x) + qD(x) + 1

D(x) = D(C + C x) + .
1 2 p*

Again, one applies (43) to itself k times, i.e., until the argument

of the first term on the right exceeds y.

1 c2 k

'x) D(C 1  c 2 p (44)
k2

p

As expected, the results of (42) and (44) agree.

These limiting cases are useful when only bounds are needed for

the function. Note that for any combination of constants subject to

the condition, 0 < C1, C2, C 3 < 1, D(x) is bounded above and below

by the solutions for C = 0 and C 3 1.

< D(x) < (45)
p r

qp
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Considered next are the solutions of (1) when C + C < 1. In
2 3-1

the interests of simplicity, let the absorbing barrier first be taken

as one of the points reached by forward steps only, having started at

the origin, i.e.

(1- -k

C , 2 for some k.

1 1-c2
First, let y = C1. Then for all x in the interval (0,C1

D(x) = 1 + qD(C x)

3= 1 + q(l + q(~)

=I+ q + q 2+ ... + qnDCnx).q 3 3

Since, by hypothesis, D(O) < a, the last term vanishes, and

D(x) = Z q1 = (6i=O P

From (1) ,
D(O) = D(CI) + (47)

and (1) is then solved for all xc[O,Cl].

The solution (46) is available immediately, if it is recognized

that

D(x1) =D(x2), 0 < xl,x 2 <C1. (48)

To see this, note that every path that carries xI beyond y also

carries x2  there. Note, also, that, in this one instance, it matters

not what the constraint relating C2  to C3  is, just so long as

O < C3 < 1. If (48) obtains,

D(x) = 1 + qD(C x) = 1 + qD(x)

D(X) = (,

and then (46) and (48) agree.
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Next, let y C (1 + C 2). When x is in the interval (0,CI1

D(x) = pD(C1 + C2x) + qD(C x) + 1

= pD(C 1 + C2 ) + C2x) + pqD(C (C + C2 x) + qD(C x) + 1 + p.

1 2 23 1 2x)3
= 0 + pqD(C 3(C 1 + C 2x)) + qD(C 3x) + 1 + p. (50)

Using the same method as that used in the previous problem, i.e.

iterating (50)

D(x) = pqD(C3(C1 + C2x)) + qD(C3x) + 1 + p

= p2 q2D(C3Cl(1 + C2C ) + C2D2x) + pq
2D(C 2C( + C x))

p32D(C2( 3 2 2

+ pq D(C (C + C C x)) + q 2 D(Csx) + (l + p)(l + q + pq)
3 1 2 3 3 -l-)l-~q

= (l + p)Ml + (l - p2 ) + (i p2 ) 2 + ... ) (51)

(1 + p) E (l - p2)
i=O

(li + p) 11 - (i - p2)

li-p
+

2
p

1 1

p

Again, the finiteness of D(x) assures the vanishing of all but the

last term in iterative scheme. If x is in the other interval,

(C1 ,CI(1 + C2),

D(x) = 1 + qD(C x).



But C3x < C . So

D(x) =1 + q(-l +

p 2 p

1 + + p) (52)
2

p1

2 2
p p

Note that the argument following (48) applies here, too. However, the

constraint C2 + C3 < 1 is necessary so that C x < C1  for all x

in rO,y]. Following the method for obtaining (49),

D(x) = pqD(C3(C1 + C2x)) + qD(Cx) + 1 + p 0 < x < C
1 + P 1 + 1 1

D(x) - pq- q 2 - 2 p
p p

Of course, the same thing applies for xE(Cl,C1 (l + C2)]. Now, one

can generalize for

k
2Y I C1 1- 2

First let xc(O,Cl]. The method is as follows: iterate the first term

of (1) until the argument of the first term is greater than y.

D(x) = pD(C1 + C2 x) + qD(C x) + 1

= p2D(CI(1 + C2) + C2x) + pqD(C (C + C x)) + qD(C x) + 1 + p
1 2 23 1 2 q( 3 )

pk D(C 2 k) pk-iD(X ) pk-2D(X D(C-p D( 1  2- + C2 x_ + q x 1  + +...+(D(O x

1 -C2 k-ilk-

+ 1 + p + p 2+...+ pk-l, (54)

where 0 < x, < C1  for i = 1,2,...k - 1. If we designate C x by xo,

a more compact form for (53) is available. In fact, a special case of
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equation (4) obtains. The first term on the right side of (53)

vanishes and

k-1. k-1i
D(x) = q E p'D(x) + E p

i=O i=O
(55)

k-i. k
= q piD(xi) +

i=O q

Again, remembering that D(x). < b , iterating (54) yields

D(x) k- - ( 1 + (1 - pk) + (1- pk)2"
q

k

p k

(i - 2 .(56)2 k-i
+ p +p + ... + p

k
p

1 1 1 1
P p pP

pp 2 P3 pk

A siypler, more direct solution is again available if the same heuristic

argument is used as that used for finding (49) and (52). All the

arguments in the sum in (54) are in the interval (0,C so we may

equate all of the functions D(xi) to D(x).

k-l. k
D(x) =D(x)q E p q

i=O q

D(x) = p  (57)
1-q(l - p-.)

q
k-p_

k
qp -i - n

which agrees with (55). For xE C 1  - C1 12 2, n =2,3, ...k,
1T--2 c --2
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the solution follows the same methods as for the derivation of (52). Then,

1 1 1 1 <x<C-- 5 -+ ... 1
P P P

1 1 1 C < x < C(1 + C)

p 3 P k 1 1 2

(i - 6 3 )
D(x) 1 1 C l+C) <x<C 2

3 k 1 2 -p p p2

(58)

(l Ckl 1
1 C2 < x <C 2
k 1 1-C 2 C2
p-' l i- 2 <x Oi-c2•

Next, we shall derive D(x) for the case C2 + C3, < 1 but

1 - C2

Again, the simplest case will be solved first. If 0 < y <C, the

earlier results apply and

D(x) 0 < x < y. (59)
p 1-- -k

i 2
When y is not one of the points, C1 1 ---- ,the solutions

become much more involved. The derivations follow the same pattern

as before but the intervals which divide the domain of the function,

D(x), become more complicated. Only one case is presented here but

all other possible choices for y lead to the same type of derivation.

This case is, then, more of an example than a useful result since the

choice of position for the absorbing barrier is not very far out on

the line of admissible values. In fact, y is chosen to lie between

the first and second forward step, starting at the origin, i.e.,

C1 < y < C1 (l + C2). It will become evident later on that a further



22

subdivision on the values y may assume is necessary and to that end,

the following inequality must be proved.

Cl
C1 < c C(l + C) (60)

Since both C and C are less than one, the left side of the
2 3

inequality is obvious. We need only the constraint, C2 + C <1 to
2 3

show the other.

C1 Cl
1 _ _1 _ __(_-

2C3  2

Cl( + C2 (1 - C2) + C (l - C2)2 + C(l -Q2)3 +

2 c i- 2

C (1 + C) + (-C2 + E cl Ci)1 2 1 2 i=2 2 2
=22

C C(l - C )2

C(1 + C2 ) + C- C 2 + 2 2

1 l 2) 1 2 32(1 + C 2 (C5 2 2

1 2 l-C(1757)
2 2

<C 1l C ).

First, take the case,

CI1- < y < C( + C2 ). (61)
- 52C3

From (61), we note that

y -CI y -CI
- 1+ C Y - C y
C 2 C2 3C2 - 2

y - C1 - c2c Y

= 32 + C 3Y
(62)

y(l -c 2c3) -c 1

2 y + C3Y

- C2 3c2 +cy=c
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The following sketch is an aid to remembering the ordering of pertinent

pointst
i I I I!

0 C3y CC y C(l + C2 )
C 2  1 1 C2 C31 2

y - C

Now, to return to the problem. When 0 < x <
C2

D(x) = pD(C1 + C2 x) + qD(C 3x) + 1

= pqD(C 3 (C1 + C2 x)) + qD(C 3x) + 1 + p.

From (62) and the condition on x
y - C1c31(C , C2X) < C3y _ C 2

so the arguments of both of the D(-) functions on the right side of

(63) are to the left of x. The solution of (63)then reduces to that

of (53) and

D(x) = 1 + -1 (64)
P

y - C1
When C- < x < y,

C2

D(x) = 1 + qD(C3x).

But
y - C 1

C3x< Cy< c2

so

D(x) = + q ( + 1) = - . (65)p 2
p p
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The remaining part of the interval, (C1 ,Cl (1 + C 2)], cannot be

taken as the set from which possible values for y may be drawn and

get a single result for D(). To see this note that different points

of discontinuity (relative to y) arise when different values of y

are taken from (C, C1 1. (The latter set is simply
are taken fro (Cl9 - CC

(ClC 1 U+ C 2) 1 _ CC ' C1(l + C2)1.)

The method for finding the values of y which admit of a single solu-

tion (in terms of y) is to determine the number of points of

discontinuity to allow and then find the range of y which yields

that number of such points. Then by appealing to Theorems 2 and 3,

we may take D) to be constant in each interval between adjacent

points of discontinuity. For example, if only three regions are

wanted, proceed as follows: Take y as the first point of discon-
y - C1

tinuity, and since y > CI, surely 2 is also such a point

(Theorem 1). The point,

2 C 2-_-- C

may be the last point of discontinuity or it may generate more points.
y - Cl

To insure that is the last such point, neither

T1 (y C1 no T-1 y - C 1
TI(Y ^C ) .nor T2 I( - C I

1 C2 3 23

may exist. The range of y must be such that

y -C
T1 7C < 0 and

T 2(y - C I ) >

2 3
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or
y -cD

C y < 2 < C1

and the range of y is, then,
C1 2 < y < CI(1 + C2C 3 (66)

l c2<Y 3.

and these points are in (Cl' 1 -C 
2 3

C1  C1
1 2' l + C)] C (C, C C

23y C
Now, one can proceed to iterate the functional equation. When 0 < x < c

D(x): = pD(C 1 4 C2x) + qD(C3x) + 1 (67)

= pqD(C3 (C1 + C2 x)) + qD(C x) + 1 + p.

But
y - C

C(C 1 + C2 x) > CC 3 > .

Here,- it is convenient to sketch the ordering of points and label the

regions between discontinuities.

I I I I !I

0 y Cy C y C ( C
2 1I3 3 C2 C 1 1 2

Because of Theorems 2 and 3,

D(x) = D(x i), x 6 X i .

Then the iterated equation becomes

D(xl) = pqD(x2) + qD(x I) + 1 + p

= pq2D(x1 ) + qD(xl) + 1 + p + pq (68)
D(x1)  + p + pq2 1 + 1

-q -pq p2(1 + q) P
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y -C 1  Y -C 1

Similarly, for < x <CC

D(x 2 ) 1 + qD(X )2 1 (69)

=l+q(2 +
p ( + q) P

(l + q ( p
x C 1CI

and for C- < x < y,

273
D(x ) = 1 + qD(x 2)

-1 2 (70)=i+ q + q 2( 21 1

1 p2(l 
+ q) P

p (l + q)

The two problems solved above, are, of course, special cases.

Some generalization is possible so that the arduous task of seeking

points of discontinuity is not always necessary. The first of the two

problems solved above is especially easy to generalize. Consider those

values of y which lie in the intervals given by

k-l 1  k(-c 2 ) 2C l 12k- < y : C .-' k i,2,3,...
(1 - 2 (I - C2 C 3) 2

The functional equation (4) may be used now to determine the function.

When k-

0 x<1 (l-c)C
- k-li 011 C 2

k-lC k
D(x) = q F, pD(C (C 2 + C2X)) + (71)

0 = i 1 C

i=O 2

k-1 2
= Z p(l+qD(C (C 2 + C x))).

i=O 311-0 2
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Now each of the arguments of the D(.) function is less than

(l Ck-l)(i - ck2
-; -C 1 2
Sk-1 1 i - C 2

2
so, again appealing to Theorems 2 and 3, (71) may be written

k

D(x) - 1 -. (1 + qD(x)) (72)
q

and, finally,
k

OD x - 1-- -
(75)

k 73)
qp

The same method applies when x is in the next interval, viz.,

k-1 k2
-(l c2 ) (l- c-(2-i -cI  < x < I  i 2
k- 1 1 1 -2 -CC2

C02 2

Let x = x when x is in

(1 - Ck - l)

C2 -2

and x =x 2  when x ismi
k-l k

( - Ck2)
(0 2 2C - l 1 2 (i -C2

Then the functional equation becomes

k-l

D(x 2 ) - (i + D(l)(72

q

k-i k=- p t +
qk

k-i

- k
qp
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The previous examples suffice to demonstrate the method for

finding D(x) when C2 + C3 < 1. There are always a finite number

of points of discontinuity between zero and y. For some n,

-n (75)

and then T -fly is the last point of discontinuity found by applying

-1-n
inverse operations, T and T2. Note that C u < C for all

1 2 3 1

and C2 + C3 _ 1 , so C3 u< 1  21

The reader may verify the fact that no more than a finite number of

inverse operations are necessary to assure that T-n y(C 3 yC 1 1, using

the arguments of Section 2 of the paper, "Studies in Generalized Random

Walks, I. Distribution Functions and Moments." If there are m points

of discontinuity, exclusive of zero, and they are denoted by i, let

D(x) = D(x.) for gi-l < x < i." Equations (2) or (4) may then be

used to set up a system of equations,

D(xi) = f(xlx 2 ,...xmblb 2,...) (76)

where f(...) is a function of the xi's and constants, bi,b 2,.

which involve powers of p and q. The solution of (76) is then the

complete solution for D(.).

No simple method has been devised for finding D(x) when C + C > 1.
2 3

There are, however, several approximation techniques. These approxima-

tions will be discussed in another paper in connection with the applications.

The conditions that are imposed by some of the applied problems make the

solutions quite special and are, therefore, more logically discussed

with those problems.


